Simulated doping: from space charge regions to 2d materials

Leeor Kronik

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel

Abstract

Doping is an essential and indispensable part of semiconductor technology. However, the inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Here, I will present a simple yet effective approach based on "pseudoatoms", possessing a fractional nuclear charge matching the bulk doping concentration. For simulating space charge regions, the approach is augmented by a multiscale technique that is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. I will show a wide range of scenarios where this approach is useful, including recent applications to novel polarization phenomena in 2d materials.